Assumptions:
Alternative assumptions:
Alternative assumptions:
TeX:
\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \left(0, \infty\right) a \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \left(-\infty, 0\right] a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; \arg(a) - \arg(b) \in \left(-\pi, \pi\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
CC | Complex numbers | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval | |
OpenClosedInterval | Open-closed interval | |
Arg | Complex argument | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("0d8e03"), Formula(Equal(Sqrt(Div(a, b)), Div(Sqrt(a), Sqrt(b)))), Variables(a, b), Assumptions(And(Element(a, CC), Element(b, OpenInterval(0, Infinity))), And(Element(a, ClosedOpenInterval(0, Infinity)), Element(b, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))), And(Element(a, CC), Element(b, SetMinus(CC, Set(0))), Element(Sub(Arg(a), Arg(b)), OpenClosedInterval(Neg(Pi), Pi)))))