Assumptions:
TeX:
R_G\!\left(x, y, z\right) = \frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \sqrt{x \sin^{2}\!\left(\theta\right) \cos^{2}\!\left(\phi\right) + y \sin^{2}\!\left(\theta\right) \sin^{2}\!\left(\phi\right) + z \cos^{2}\!\left(\theta\right)} \sin(\theta) \, d\theta \, d\phi x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Sqrt | Principal square root | |
Pow | Power | |
Sin | Sine | |
Cos | Cosine | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("0d8639"), Formula(Equal(CarlsonRG(x, y, z), Mul(Div(1, Mul(4, Pi)), Integral(Integral(Mul(Sqrt(Add(Add(Mul(Mul(x, Pow(Sin(theta), 2)), Pow(Cos(phi), 2)), Mul(Mul(y, Pow(Sin(theta), 2)), Pow(Sin(phi), 2))), Mul(z, Pow(Cos(theta), 2)))), Sin(theta)), For(theta, 0, Pi)), For(phi, 0, Mul(2, Pi)))))), Variables(x, y, z), Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), GreaterEqual(Re(x), 0), GreaterEqual(Re(y), 0), GreaterEqual(Re(z), 0))))