Fungrim home page

Fungrim entry: 0d3186

RF ⁣(x,y,z)=limε0+RF ⁣(x+εi,y+εi,z+εi)R_F\!\left(x, y, z\right) = \lim_{\varepsilon \to {0}^{+}} R_F\!\left(x + \varepsilon i, y + \varepsilon i, z + \varepsilon i\right)
Assumptions:xC  and  yC  and  zC  and  ((x0  and  y0)  or  (x0  and  z0)  or  (y0  and  z0))x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
TeX:
R_F\!\left(x, y, z\right) = \lim_{\varepsilon \to {0}^{+}} R_F\!\left(x + \varepsilon i, y + \varepsilon i, z + \varepsilon i\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
RightLimitlimxa+f(x)\lim_{x \to {a}^{+}} f(x) Limiting value, from the right
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("0d3186"),
    Formula(Equal(CarlsonRF(x, y, z), RightLimit(CarlsonRF(Add(x, Mul(epsilon, ConstI)), Add(y, Mul(epsilon, ConstI)), Add(z, Mul(epsilon, ConstI))), For(epsilon, 0)))),
    Variables(x, y, z),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC