Assumptions:
TeX:
R_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{atanh}\!\left(\sqrt{1 - \frac{y}{x}}\right)}{\sqrt{x - y}}, & x \ne y\\\frac{1}{\sqrt{x}}, & x = y\\ \end{cases} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(x \in \left(0, \infty\right) \;\mathbin{\operatorname{or}}\; \left(y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \notin \left(-\infty, 0\right)\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
Sqrt | Principal square root | |
CC | Complex numbers | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("0cf60d"), Formula(Equal(CarlsonRC(x, y), Cases(Tuple(Div(Atanh(Sqrt(Sub(1, Div(y, x)))), Sqrt(Sub(x, y))), NotEqual(x, y)), Tuple(Div(1, Sqrt(x)), Equal(x, y))))), Variables(x, y), Assumptions(And(Element(x, CC), Element(y, CC), Or(Element(x, OpenInterval(0, Infinity)), And(Element(y, OpenInterval(0, Infinity)), NotElement(x, OpenInterval(Neg(Infinity), 0)))))))