Assumptions:
TeX:
T_{n}\!\left(x\right) = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} + {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Pow | Power | |
Sqrt | Principal square root | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("0cbe75"), Formula(Equal(ChebyshevT(n, x), Mul(Div(1, 2), Add(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))), Variables(n, x), Assumptions(And(Element(n, ZZ), Element(x, CC))))