Fungrim home page

Fungrim entry: 0c7de4

Table of χ9.\chi_{9 \, . \, \ell}
\ell \ nn 012345678
1011011011
201eπi/3{e}^{\pi i / 3} 0e2πi/3{e}^{2 \pi i / 3} e2πi/3-{e}^{2 \pi i / 3} 0eπi/3-{e}^{\pi i / 3} -1
401e2πi/3{e}^{2 \pi i / 3} 0eπi/3-{e}^{\pi i / 3} eπi/3-{e}^{\pi i / 3} 0e2πi/3{e}^{2 \pi i / 3} 1
501e2πi/3-{e}^{2 \pi i / 3} 0eπi/3-{e}^{\pi i / 3} eπi/3{e}^{\pi i / 3} 0e2πi/3{e}^{2 \pi i / 3} -1
701eπi/3-{e}^{\pi i / 3} 0e2πi/3{e}^{2 \pi i / 3} e2πi/3{e}^{2 \pi i / 3} 0eπi/3-{e}^{\pi i / 3} 1
801-101-101-1
Table data: (,n,y)\left(\ell, n, y\right) such that χ(n)=y   where χ=χ9.\chi(n) = y\; \text{ where } \chi = \chi_{9 \, . \, \ell}
Definitions:
Fungrim symbol Notation Short description
DirichletCharacterχq.\chi_{q \, . \, \ell} Dirichlet character
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Source code for this entry:
Entry(ID("0c7de4"),
    Description("Table of", DirichletCharacter(9, ell)),
    Table(TableRelation(Tuple(ell, n, y), Where(Equal(chi(n), y), Equal(chi, DirichletCharacter(9, ell)))), TableHeadings(Description(ell, "\", n), 0, 1, 2, 3, 4, 5, 6, 7, 8), TableColumnHeadings(1, 2, 4, 5, 7, 8), List(Tuple(0, 1, 1, 0, 1, 1, 0, 1, 1), Tuple(0, 1, Exp(Div(Mul(Pi, ConstI), 3)), 0, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))), 0, Neg(Exp(Div(Mul(Pi, ConstI), 3))), -1), Tuple(0, 1, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), 0, Neg(Exp(Div(Mul(Pi, ConstI), 3))), Neg(Exp(Div(Mul(Pi, ConstI), 3))), 0, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), 1), Tuple(0, 1, Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))), 0, Neg(Exp(Div(Mul(Pi, ConstI), 3))), Exp(Div(Mul(Pi, ConstI), 3)), 0, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), -1), Tuple(0, 1, Neg(Exp(Div(Mul(Pi, ConstI), 3))), 0, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), Exp(Div(Mul(Mul(2, Pi), ConstI), 3)), 0, Neg(Exp(Div(Mul(Pi, ConstI), 3))), 1), Tuple(0, 1, -1, 0, 1, -1, 0, 1, -1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC