Assumptions:
TeX:
K_{3 / 2}\!\left(z\right) = {\left(\frac{\pi z}{2}\right)}^{1 / 2} {e}^{-z} \left(\frac{1}{z} + \frac{1}{{z}^{2}}\right)
z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselK | Modified Bessel function of the second kind | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("0c09cc"),
Formula(Equal(BesselK(Div(3, 2), z), Mul(Pow(Div(Mul(Pi, z), 2), Div(1, 2)), Mul(Exp(Neg(z)), Add(Div(1, z), Div(1, Pow(z, 2))))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))