Assumptions:
TeX:
f(\alpha) \text{ is holomorphic on } \alpha \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\text{ for all } f \in \left\{\alpha \mapsto R_F\!\left(\alpha, y, z\right), \alpha \mapsto R_F\!\left(x, \alpha, z\right), \alpha \mapsto R_F\!\left(x, y, \alpha\right)\right\} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
IsHolomorphic | Holomorphic predicate | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
CarlsonRF | Carlson symmetric elliptic integral of the first kind |
Source code for this entry:
Entry(ID("0ba30f"), Formula(All(IsHolomorphic(f(alpha), ForElement(alpha, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))), ForElement(f, Set(Fun(alpha, CarlsonRF(alpha, y, z)), Fun(alpha, CarlsonRF(x, alpha, z)), Fun(alpha, CarlsonRF(x, y, alpha)))))), Variables(x, y, z), Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))