Fungrim home page

Fungrim entry: 0b5b04

G2k ⁣(aτ+bcτ+d)=(cτ+d)2kG2k ⁣(τ)G_{2 k}\!\left(\frac{a \tau + b}{c \tau + d}\right) = {\left(c \tau + d\right)}^{2 k} G_{2 k}\!\left(\tau\right)
Assumptions:kZ2  and  τH  and  (abcd)SL2(Z)k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})
TeX:
G_{2 k}\!\left(\frac{a \tau + b}{c \tau + d}\right) = {\left(c \tau + d\right)}^{2 k} G_{2 k}\!\left(\tau\right)

k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})
Definitions:
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
HHH\mathbb{H} Upper complex half-plane
Matrix2x2(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} Two by two matrix
SL2ZSL2(Z)\operatorname{SL}_2(\mathbb{Z}) Modular group
Source code for this entry:
Entry(ID("0b5b04"),
    Formula(Equal(EisensteinG(Mul(2, k), Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Mul(Pow(Add(Mul(c, tau), d), Mul(2, k)), EisensteinG(Mul(2, k), tau)))),
    Variables(k, tau, a, b, c, d),
    Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC