Assumptions:
TeX:
G_{2 k}\!\left(\frac{a \tau + b}{c \tau + d}\right) = {\left(c \tau + d\right)}^{2 k} G_{2 k}\!\left(\tau\right) k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinG | Eisenstein series | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
HH | Upper complex half-plane | |
Matrix2x2 | Two by two matrix | |
SL2Z | Modular group |
Source code for this entry:
Entry(ID("0b5b04"), Formula(Equal(EisensteinG(Mul(2, k), Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Mul(Pow(Add(Mul(c, tau), d), Mul(2, k)), EisensteinG(Mul(2, k), tau)))), Variables(k, tau, a, b, c, d), Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z))))