Fungrim home page

Fungrim entry: 0b4d4b

QD={(a,b,c):aZ1  and  bZ  and  cZ  and  b24ac=D  and  bac  and  ((b=a  or  a=c)        (b0))  and  gcd ⁣(a,b,c)=1}\mathcal{Q}^{*}_{D} = \left\{ \left(a, b, c\right) : a \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; c \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; {b}^{2} - 4 a c = D \;\mathbin{\operatorname{and}}\; \left|b\right| \le a \le c \;\mathbin{\operatorname{and}}\; \left(\left(\left|b\right| = a \;\mathbin{\operatorname{or}}\; a = c\right) \;\implies\; \left(b \ge 0\right)\right) \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, b, c\right) = 1 \right\}
Assumptions:D{3,4,}  and  Dmod4{0,3}D \in \{-3, -4, \ldots\} \;\mathbin{\operatorname{and}}\; -D \bmod 4 \in \left\{0, 3\right\}
References:
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, Definition 5.3.2
TeX:
\mathcal{Q}^{*}_{D} = \left\{ \left(a, b, c\right) : a \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; c \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; {b}^{2} - 4 a c = D \;\mathbin{\operatorname{and}}\; \left|b\right| \le a \le c \;\mathbin{\operatorname{and}}\; \left(\left(\left|b\right| = a \;\mathbin{\operatorname{or}}\; a = c\right) \;\implies\; \left(b \ge 0\right)\right) \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, b, c\right) = 1 \right\}

D \in \{-3, -4, \ldots\} \;\mathbin{\operatorname{and}}\; -D \bmod 4 \in \left\{0, 3\right\}
Definitions:
Fungrim symbol Notation Short description
PrimitiveReducedPositiveIntegralBinaryQuadraticFormsQD\mathcal{Q}^{*}_{D} Primitive reduced positive integral binary quadratic forms
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZZ\mathbb{Z} Integers
Powab{a}^{b} Power
Absz\left|z\right| Absolute value
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("0b4d4b"),
    Formula(Equal(PrimitiveReducedPositiveIntegralBinaryQuadraticForms(D), Set(Tuple(a, b, c), For(Tuple(a, b, c)), And(Element(a, ZZGreaterEqual(1)), Element(b, ZZ), Element(c, ZZ), Equal(Sub(Pow(b, 2), Mul(Mul(4, a), c)), D), LessEqual(Abs(b), a, c), Parentheses(Implies(Or(Equal(Abs(b), a), Equal(a, c)), GreaterEqual(b, 0))), Equal(GCD(a, b, c), 1))))),
    Variables(D),
    Assumptions(And(Element(D, ZZLessEqual(-3)), Element(Mod(Neg(D), 4), Set(0, 3)))),
    References("H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, Definition 5.3.2"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC