Assumptions:
TeX:
\log G\!\left(1 + z\right) = \frac{\log\!\left(2 \pi\right) - 1}{2} z - \frac{1 + \gamma}{2} {z}^{2} + \sum_{n=3}^{\infty} \frac{{\left(-1\right)}^{n + 1} \zeta\!\left(n - 1\right)}{n} {z}^{n}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| ConstGamma | The constant gamma (0.577...) | |
| Pow | Power | |
| Sum | Sum | |
| RiemannZeta | Riemann zeta function | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("0ad263"),
Formula(Equal(LogBarnesG(Add(1, z)), Add(Sub(Mul(Div(Sub(Log(Mul(2, Pi)), 1), 2), z), Mul(Div(Add(1, ConstGamma), 2), Pow(z, 2))), Sum(Mul(Div(Mul(Pow(-1, Add(n, 1)), RiemannZeta(Sub(n, 1))), n), Pow(z, n)), For(n, 3, Infinity))))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), 1))))