TeX:
K\!\left(\frac{1 + \sqrt{3} i}{2}\right) = \frac{{e}^{i \pi / 12} \cdot {3}^{1 / 4} {\left(\Gamma\!\left(\frac{1}{3}\right)\right)}^{3}}{{2}^{7 / 3} \pi}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| ConstI | Imaginary unit | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| Gamma | Gamma function |
Source code for this entry:
Entry(ID("0abbe1"),
Formula(Equal(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2)), Div(Mul(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi)))))