Assumptions:
References:
- K. Ono (2004), Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, American Mathematical Society. Theorem 1.67.
TeX:
E_{6}\!\left(\tau\right) = \frac{\eta^{24}\!\left(\tau\right)}{\eta^{12}\!\left(2 \tau\right)} - 480 \eta^{12}\!\left(2 \tau\right) - 16896 \frac{\eta^{12}\!\left(2 \tau\right) \eta^{8}\!\left(4 \tau\right)}{\eta^{8}\!\left(\tau\right)} + 8192 \frac{\eta^{24}\!\left(4 \tau\right)}{\eta^{12}\!\left(2 \tau\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
Pow | Power | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("0a5ef4"), Formula(Equal(EisensteinE(6, tau), Add(Sub(Sub(Div(Pow(DedekindEta(tau), 24), Pow(DedekindEta(Mul(2, tau)), 12)), Mul(480, Pow(DedekindEta(Mul(2, tau)), 12))), Mul(16896, Div(Mul(Pow(DedekindEta(Mul(2, tau)), 12), Pow(DedekindEta(Mul(4, tau)), 8)), Pow(DedekindEta(tau), 8)))), Mul(8192, Div(Pow(DedekindEta(Mul(4, tau)), 24), Pow(DedekindEta(Mul(2, tau)), 12)))))), Variables(tau), Assumptions(Element(tau, HH)), References("K. Ono (2004), Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, American Mathematical Society. Theorem 1.67."))