Assumptions:
TeX:
E_{2 k}\!\left(\tau\right) = \frac{G_{2 k}\!\left(\tau\right)}{2 \zeta\!\left(2 k\right)} k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
EisensteinG | Eisenstein series | |
RiemannZeta | Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("0a2120"), Formula(Equal(EisensteinE(Mul(2, k), tau), Div(EisensteinG(Mul(2, k), tau), Mul(2, RiemannZeta(Mul(2, k)))))), Variables(k, tau), Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(tau, HH))))