Assumptions:
TeX:
E_{2 k}\!\left(\tau\right) = \frac{G_{2 k}\!\left(\tau\right)}{2 \zeta\!\left(2 k\right)}
k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinE | Normalized Eisenstein series | |
| EisensteinG | Eisenstein series | |
| RiemannZeta | Riemann zeta function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("0a2120"),
Formula(Equal(EisensteinE(Mul(2, k), tau), Div(EisensteinG(Mul(2, k), tau), Mul(2, RiemannZeta(Mul(2, k)))))),
Variables(k, tau),
Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(tau, HH))))