Assumptions:
TeX:
\,{}_0{\textbf F}_1\!\left(a, z\right) = \sum_{k=0}^{\infty} \frac{1}{\Gamma\!\left(a + k\right)} \frac{{z}^{k}}{k !} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric0F1Regularized | Regularized confluent hypergeometric limit function | |
Sum | Sum | |
Gamma | Gamma function | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("0a0aec"), Formula(Equal(Hypergeometric0F1Regularized(a, z), Sum(Mul(Div(1, Gamma(Add(a, k))), Div(Pow(z, k), Factorial(k))), For(k, 0, Infinity)))), Variables(a, z), Assumptions(And(Element(a, CC), Element(z, CC))))