Fungrim home page

Fungrim entry: 0983d1

Table of μk{\mu}_{k} for 0k150 \le k \le 15
kk μk{\mu}_{k} NearestDecimal ⁣(μk,30)\operatorname{NearestDecimal}\!\left({\mu}_{k}, 30\right)
0-1-1.00000000000000000000000000000
111.00000000000000000000000000000
2-1/3-0.333333333333333333333333333333
311/720.152777777777777777777777777778
4-43/540-0.0796296296296296296296296296296
5769/172800.0445023148148148148148148148148
6-221/8505-0.0259847148736037624926513815403
7680863/435456000.0156356325323339212228101116990
8-1963/204120-0.00961689202429943170683911424652
9226287557/376233984000.00601454325295611786095325189975
10-5776369/1515591000-0.00381129803489199922670430215012
11169709463197/695280402432000.00244087799114398266589685852864
12-1118511313/709296588000-0.00157693034468678425392340953993
13667874164916771/6507824566763520000.00102626332050760715443754815339
14-500525573/744761417400-0.000672061631156136204002020043419
15103663334225097487/2342816844034867200000.000442473061814620909930207608585
Table data: (k,μ,r)\left(k, \mu, r\right) such that μk=μandNearestDecimal ⁣(μk,30)=r{\mu}_{k} = \mu \,\mathbin{\operatorname{and}}\, \operatorname{NearestDecimal}\!\left({\mu}_{k}, 30\right) = r
Definitions:
Fungrim symbol Notation Short description
LambertWPuiseuxCoefficientμk{\mu}_{k} Coefficient in scaled Puiseux expansion of Lambert W-function
Source code for this entry:
Entry(ID("0983d1"),
    Description("Table of", LambertWPuiseuxCoefficient(k), "for", LessEqual(0, k, 15)),
    Table(TableRelation(Tuple(k, mu, r), And(Equal(LambertWPuiseuxCoefficient(k), mu), Equal(NearestDecimal(LambertWPuiseuxCoefficient(k), 30), r))), TableHeadings(k, LambertWPuiseuxCoefficient(k), NearestDecimal(LambertWPuiseuxCoefficient(k), 30)), TableSplit(1), List(Tuple(0, -1, Decimal("-1.00000000000000000000000000000")), Tuple(1, 1, Decimal("1.00000000000000000000000000000")), Tuple(2, Div(-1, 3), Decimal("-0.333333333333333333333333333333")), Tuple(3, Div(11, 72), Decimal("0.152777777777777777777777777778")), Tuple(4, Div(-43, 540), Decimal("-0.0796296296296296296296296296296")), Tuple(5, Div(769, 17280), Decimal("0.0445023148148148148148148148148")), Tuple(6, Div(-221, 8505), Decimal("-0.0259847148736037624926513815403")), Tuple(7, Div(680863, 43545600), Decimal("0.0156356325323339212228101116990")), Tuple(8, Div(-1963, 204120), Decimal("-0.00961689202429943170683911424652")), Tuple(9, Div(226287557, 37623398400), Decimal("0.00601454325295611786095325189975")), Tuple(10, Div(-5776369, 1515591000), Decimal("-0.00381129803489199922670430215012")), Tuple(11, Div(169709463197, 69528040243200), Decimal("0.00244087799114398266589685852864")), Tuple(12, Div(-1118511313, 709296588000), Decimal("-0.00157693034468678425392340953993")), Tuple(13, Div(667874164916771, 650782456676352000), Decimal("0.00102626332050760715443754815339")), Tuple(14, Div(-500525573, 744761417400), Decimal("-0.000672061631156136204002020043419")), Tuple(15, Div(103663334225097487, 234281684403486720000), Decimal("0.000442473061814620909930207608585")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC