Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
R_{N}\!\left(z\right) = \frac{1}{{z}^{2 N}} \frac{{\left(-1\right)}^{N + 1}}{\pi} \int_{0}^{\infty} \frac{{t}^{2 N - 1}}{1 + {\left(\frac{t}{z}\right)}^{2}} \operatorname{Li}_{2}\!\left({e}^{-2 \pi t}\right) \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesGRemainder | Remainder term in asymptotic expansion of logarithmic Barnes G-function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Exp | Exponential function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("092cee"), Formula(Equal(LogBarnesGRemainder(N, z), Mul(Mul(Div(1, Pow(z, Mul(2, N))), Div(Pow(-1, Add(N, 1)), Pi)), Integral(Mul(Div(Pow(t, Sub(Mul(2, N), 1)), Add(1, Pow(Div(t, z), 2))), PolyLog(2, Exp(Neg(Mul(Mul(2, Pi), t))))), For(t, 0, Infinity))))), Variables(z, N), Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(N, ZZGreaterEqual(1)))), References("https://dx.doi.org/10.1098/rspa.2014.0534"))