Fungrim home page

Fungrim entry: 092cee

RN ⁣(z)=1z2N(1)N+1π0t2N11+(tz)2Li2 ⁣(e2πt)dtR_{N}\!\left(z\right) = \frac{1}{{z}^{2 N}} \frac{{\left(-1\right)}^{N + 1}}{\pi} \int_{0}^{\infty} \frac{{t}^{2 N - 1}}{1 + {\left(\frac{t}{z}\right)}^{2}} \operatorname{Li}_{2}\!\left({e}^{-2 \pi t}\right) \, dt
Assumptions:zC  and  Re(z)>0  and  NZ1z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
References:
  • https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
R_{N}\!\left(z\right) = \frac{1}{{z}^{2 N}} \frac{{\left(-1\right)}^{N + 1}}{\pi} \int_{0}^{\infty} \frac{{t}^{2 N - 1}}{1 + {\left(\frac{t}{z}\right)}^{2}} \operatorname{Li}_{2}\!\left({e}^{-2 \pi t}\right) \, dt

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
LogBarnesGRemainderRN ⁣(z)R_{N}\!\left(z\right) Remainder term in asymptotic expansion of logarithmic Barnes G-function
Powab{a}^{b} Power
Piπ\pi The constant pi (3.14...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("092cee"),
    Formula(Equal(LogBarnesGRemainder(N, z), Mul(Mul(Div(1, Pow(z, Mul(2, N))), Div(Pow(-1, Add(N, 1)), Pi)), Integral(Mul(Div(Pow(t, Sub(Mul(2, N), 1)), Add(1, Pow(Div(t, z), 2))), PolyLog(2, Exp(Neg(Mul(Mul(2, Pi), t))))), For(t, 0, Infinity))))),
    Variables(z, N),
    Assumptions(And(Element(z, CC), Greater(Re(z), 0), Element(N, ZZGreaterEqual(1)))),
    References("https://dx.doi.org/10.1098/rspa.2014.0534"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC