Assumptions:
TeX:
R_G\!\left(-x, -y, -z\right) = i R_G\!\left(x, y, z\right)
x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| ConstI | Imaginary unit | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("092716"),
Formula(Equal(CarlsonRG(Neg(x), Neg(y), Neg(z)), Mul(ConstI, CarlsonRG(x, y, z)))),
Variables(x, y, z),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)))))