Fungrim home page

Fungrim entry: 092716

RG ⁣(x,y,z)=iRG ⁣(x,y,z)R_G\!\left(-x, -y, -z\right) = i R_G\!\left(x, y, z\right)
Assumptions:x[0,)  and  y[0,)  and  z[0,)x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
TeX:
R_G\!\left(-x, -y, -z\right) = i R_G\!\left(x, y, z\right)

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRGRG ⁣(x,y,z)R_G\!\left(x, y, z\right) Carlson symmetric elliptic integral of the second kind
ConstIii Imaginary unit
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("092716"),
    Formula(Equal(CarlsonRG(Neg(x), Neg(y), Neg(z)), Mul(ConstI, CarlsonRG(x, y, z)))),
    Variables(x, y, z),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC