Fungrim home page

Fungrim entry: 08b69d

(an+1,bn+1)=(an+bn2,anbn)   where (ak,bk)=agmk ⁣(a,b)\left(a_{n + 1}, b_{n + 1}\right) = \left(\frac{a_{n} + b_{n}}{2}, \sqrt{a_{n} b_{n}}\right)\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right)
Assumptions:nZ0  and  aC  and  bC  and  (a=0  or  b=0  or  (Re(a)>0  and  Re(b)>0)  or  arg(a)+arg(b)<π)n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(a = 0 \;\mathbin{\operatorname{or}}\; b = 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0\right) \;\mathbin{\operatorname{or}}\; \left|\arg(a)\right| + \left|\arg(b)\right| < \pi\right)
TeX:
\left(a_{n + 1}, b_{n + 1}\right) = \left(\frac{a_{n} + b_{n}}{2}, \sqrt{a_{n} b_{n}}\right)\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right)

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(a = 0 \;\mathbin{\operatorname{or}}\; b = 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0\right) \;\mathbin{\operatorname{or}}\; \left|\arg(a)\right| + \left|\arg(b)\right| < \pi\right)
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
AGMSequenceagmn ⁣(a,b)\operatorname{agm}_{n}\!\left(a, b\right) Convergents in AGM iteration
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Absz\left|z\right| Absolute value
Argarg(z)\arg(z) Complex argument
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("08b69d"),
    Formula(Where(Equal(Tuple(a_(Add(n, 1)), b_(Add(n, 1))), Tuple(Div(Add(a_(n), b_(n)), 2), Sqrt(Mul(a_(n), b_(n))))), Def(Tuple(a_(k), b_(k)), AGMSequence(k, a, b)))),
    Variables(n, a, b),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Element(b, CC), Or(Equal(a, 0), Equal(b, 0), And(Greater(Re(a), 0), Greater(Re(b), 0)), Less(Add(Abs(Arg(a)), Abs(Arg(b))), Pi)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC