Assumptions:
TeX:
\theta_{1}^{4}\!\left(z, \tau\right) + \theta_{3}^{4}\!\left(z, \tau\right) = \theta_{2}^{4}\!\left(z, \tau\right) + \theta_{4}^{4}\!\left(z, \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("08822c"),
Formula(Equal(Add(Pow(JacobiTheta(1, z, tau), 4), Pow(JacobiTheta(3, z, tau), 4)), Add(Pow(JacobiTheta(2, z, tau), 4), Pow(JacobiTheta(4, z, tau), 4)))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))