Assumptions:
TeX:
s\!\left(n, k\right) = {\left(-1\right)}^{n + k} \left[{n \atop k}\right] n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
StirlingS1 | Signed Stirling number of the first kind | |
Pow | Power | |
StirlingCycle | Unsigned Stirling number of the first kind | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("071a94"), Formula(Equal(StirlingS1(n, k), Mul(Pow(-1, Add(n, k)), StirlingCycle(n, k)))), Variables(n, k), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZGreaterEqual(0)))))