Assumptions:
TeX:
\theta_{2}\!\left(z , \tau\right) = 2 {e}^{\pi i \tau / 4} \sum_{n=0}^{\infty} {q}^{n \left(n + 1\right)} \cos\!\left(\left(2 n + 1\right) \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Sum | Sum | |
| Pow | Power | |
| Cos | Cosine | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("06633e"),
Formula(Equal(JacobiTheta(2, z, tau), Where(Mul(Mul(2, Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Pow(q, Mul(n, Add(n, 1))), Cos(Mul(Mul(Add(Mul(2, n), 1), Pi), z))), For(n, 0, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))