Fungrim home page

Fungrim entry: 0649c9

Tn ⁣(x)=Un ⁣(x)Un2 ⁣(x)2T_{n}\!\left(x\right) = \frac{U_{n}\!\left(x\right) - U_{n - 2}\!\left(x\right)}{2}
Assumptions:nZandxCn \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
T_{n}\!\left(x\right) = \frac{U_{n}\!\left(x\right) - U_{n - 2}\!\left(x\right)}{2}

n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("0649c9"),
    Formula(Equal(ChebyshevT(n, x), Div(Sub(ChebyshevU(n, x), ChebyshevU(Sub(n, 2), x)), 2))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZ), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC