Assumptions:
TeX:
\theta_{2}\!\left(z , -\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} {e}^{\pi i \tau {z}^{2}} \theta_{4}\!\left(\tau z , \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Sqrt | Principal square root | |
| ConstI | Imaginary unit | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("06319a"),
Formula(Equal(JacobiTheta(2, z, Div(-1, tau)), Mul(Mul(Sqrt(Div(tau, ConstI)), Exp(Mul(Mul(Mul(Pi, ConstI), tau), Pow(z, 2)))), JacobiTheta(4, Mul(tau, z), tau)))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))