Assumptions:
TeX:
\Pi\!\left(n, \phi, m\right) = \int_{0}^{\sin(\phi)} \frac{1}{\left(1 - n {x}^{2}\right) \sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx
\phi \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \;\mathbin{\operatorname{and}}\; n \in \left(-\infty, 1\right) \;\mathbin{\operatorname{and}}\; m \in \left(-\infty, 1\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| IncompleteEllipticPi | Legendre incomplete elliptic integral of the third kind | |
| Integral | Integral | |
| Pow | Power | |
| Sqrt | Principal square root | |
| Sin | Sine | |
| ClosedInterval | Closed interval | |
| Pi | The constant pi (3.14...) | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("06223c"),
Formula(Equal(IncompleteEllipticPi(n, phi, m), Integral(Div(1, Mul(Mul(Sub(1, Mul(n, Pow(x, 2))), Sqrt(Sub(1, Pow(x, 2)))), Sqrt(Sub(1, Mul(m, Pow(x, 2)))))), For(x, 0, Sin(phi))))),
Variables(n, phi, m),
Assumptions(And(Element(phi, ClosedInterval(Div(Neg(Pi), 2), Div(Pi, 2))), Element(n, OpenInterval(Neg(Infinity), 1)), Element(m, OpenInterval(Neg(Infinity), 1)))))