Assumptions:
TeX:
\sum_{n=0}^{\infty} F_{n} {z}^{n} = \frac{z}{1 - z - {z}^{2}} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < \varphi - 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Fibonacci | Fibonacci number | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value | |
GoldenRatio | The golden ratio (1.618...) |
Source code for this entry:
Entry(ID("05209f"), Formula(Equal(Sum(Mul(Fibonacci(n), Pow(z, n)), For(n, 0, Infinity)), Div(z, Sub(Sub(1, z), Pow(z, 2))))), Variables(z), Assumptions(And(Element(z, CC), Less(Abs(z), Sub(GoldenRatio, 1)))))