Assumptions:
TeX:
1 - \lambda(\tau) = \frac{\theta_{4}^{4}\!\left(0, \tau\right)}{\theta_{3}^{4}\!\left(0, \tau\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularLambda | Modular lambda function | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("04d3a6"),
Formula(Equal(Sub(1, ModularLambda(tau)), Div(Pow(JacobiTheta(4, 0, tau), 4), Pow(JacobiTheta(3, 0, tau), 4)))),
Variables(tau),
Assumptions(Element(tau, HH)))