References:
- http://www.lacim.uqam.ca/~plouffe/inspired2.pdf
TeX:
\pi = 72 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{\pi n} - 1\right)} - 96 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{2 \pi n} - 1\right)} + 24 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{4 \pi n} - 1\right)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pi | The constant pi (3.14...) | |
Sum | Sum | |
Exp | Exponential function | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("0479f5"), Formula(Equal(Pi, Add(Sub(Mul(72, Sum(Div(1, Mul(n, Sub(Exp(Mul(Pi, n)), 1))), For(n, 1, Infinity))), Mul(96, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(2, Pi), n)), 1))), For(n, 1, Infinity)))), Mul(24, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(4, Pi), n)), 1))), For(n, 1, Infinity)))))), References("http://www.lacim.uqam.ca/~plouffe/inspired2.pdf"))