Assumptions:
TeX:
K(m) = \int_{0}^{\pi / 2} \frac{1}{\sqrt{1 - m \sin^{2}\!\left(x\right)}} \, dx m \in \mathbb{C} \setminus \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EllipticK | Legendre complete elliptic integral of the first kind | |
Integral | Integral | |
Sqrt | Principal square root | |
Pow | Power | |
Sin | Sine | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("0455b3"), Formula(Equal(EllipticK(m), Integral(Div(1, Sqrt(Sub(1, Mul(m, Pow(Sin(x), 2))))), For(x, 0, Div(Pi, 2))))), Variables(m), Assumptions(Element(m, SetMinus(CC, ClosedOpenInterval(1, Infinity)))))