References:
- https://doi.org/10.2307/2005327
TeX:
{e}^{\pi} = 32 \prod_{n=0}^{\infty} {\left(\frac{a_{n + 1}}{a_{n}}\right)}^{{2}^{1 - n}}\; \text{ where } \left(a_{n}, b_{n}\right) = \operatorname{agm}_{n}\!\left(1, \frac{1}{\sqrt{2}}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Product | Product | |
Pow | Power | |
Infinity | Positive infinity | |
AGMSequence | Convergents in AGM iteration | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("042551"), Formula(Equal(Exp(Pi), Where(Mul(32, Product(Pow(Div(a_(Add(n, 1)), a_(n)), Pow(2, Sub(1, n))), For(n, 0, Infinity))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, 1, Div(1, Sqrt(2))))))), References("https://doi.org/10.2307/2005327"))