Fungrim home page

Fungrim entry: 042551

eπ=32n=0(an+1an)21n   where (an,bn)=agmn ⁣(1,12){e}^{\pi} = 32 \prod_{n=0}^{\infty} {\left(\frac{a_{n + 1}}{a_{n}}\right)}^{{2}^{1 - n}}\; \text{ where } \left(a_{n}, b_{n}\right) = \operatorname{agm}_{n}\!\left(1, \frac{1}{\sqrt{2}}\right)
References:
  • https://doi.org/10.2307/2005327
TeX:
{e}^{\pi} = 32 \prod_{n=0}^{\infty} {\left(\frac{a_{n + 1}}{a_{n}}\right)}^{{2}^{1 - n}}\; \text{ where } \left(a_{n}, b_{n}\right) = \operatorname{agm}_{n}\!\left(1, \frac{1}{\sqrt{2}}\right)
Definitions:
Fungrim symbol Notation Short description
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
Productnf(n)\prod_{n} f(n) Product
Powab{a}^{b} Power
Infinity\infty Positive infinity
AGMSequenceagmn ⁣(a,b)\operatorname{agm}_{n}\!\left(a, b\right) Convergents in AGM iteration
Sqrtz\sqrt{z} Principal square root
Source code for this entry:
Entry(ID("042551"),
    Formula(Equal(Exp(Pi), Where(Mul(32, Product(Pow(Div(a_(Add(n, 1)), a_(n)), Pow(2, Sub(1, n))), For(n, 0, Infinity))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, 1, Div(1, Sqrt(2))))))),
    References("https://doi.org/10.2307/2005327"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC