Assumptions:
TeX:
E_{2}\!\left(\tau\right) = -\frac{12 i}{\pi} \frac{\eta'(\tau)}{\eta(\tau)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
ConstI | Imaginary unit | |
Pi | The constant pi (3.14...) | |
ComplexDerivative | Complex derivative | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("03ad5a"), Formula(Equal(EisensteinE(2, tau), Neg(Mul(Div(Mul(12, ConstI), Pi), Div(ComplexDerivative(DedekindEta(tau), For(tau, tau)), DedekindEta(tau)))))), Variables(tau), Assumptions(Element(tau, HH)))