Fungrim home page

Fungrim entry: 03ad5a

E2 ⁣(τ)=12iπη(τ)η(τ)E_{2}\!\left(\tau\right) = -\frac{12 i}{\pi} \frac{\eta'(\tau)}{\eta(\tau)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
E_{2}\!\left(\tau\right) = -\frac{12 i}{\pi} \frac{\eta'(\tau)}{\eta(\tau)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ConstIii Imaginary unit
Piπ\pi The constant pi (3.14...)
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("03ad5a"),
    Formula(Equal(EisensteinE(2, tau), Neg(Mul(Div(Mul(12, ConstI), Pi), Div(ComplexDerivative(DedekindEta(tau), For(tau, tau)), DedekindEta(tau)))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC