Assumptions:
TeX:
\psi^{(m)}\!\left(z + 1\right) = \psi^{(m)}\!\left(z\right) + \frac{{\left(-1\right)}^{m} m !}{{z}^{m + 1}}
m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Pow | Power | |
| Factorial | Factorial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("039051"),
Formula(Equal(DigammaFunction(Add(z, 1), m), Add(DigammaFunction(z, m), Div(Mul(Pow(-1, m), Factorial(m)), Pow(z, Add(m, 1)))))),
Variables(m, z),
Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))