Assumptions:
TeX:
\psi^{(m)}\!\left(z + 1\right) = \psi^{(m)}\!\left(z\right) + \frac{{\left(-1\right)}^{m} m !}{{z}^{m + 1}} m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Pow | Power | |
Factorial | Factorial | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("039051"), Formula(Equal(DigammaFunction(Add(z, 1), m), Add(DigammaFunction(z, m), Div(Mul(Pow(-1, m), Factorial(m)), Pow(z, Add(m, 1)))))), Variables(m, z), Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))