Assumptions:
TeX:
\frac{d}{d z}\, \frac{\theta_{3}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)} = -\pi \theta_{3}^{2}\!\left(0, \tau\right) \frac{\theta_{2}\!\left(z , \tau\right) \theta_{4}\!\left(z , \tau\right)}{\theta_{1}^{2}\!\left(z, \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| MeromorphicDerivative | Complex derivative, allowing poles | |
| JacobiTheta | Jacobi theta function | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("0373dc"),
Formula(Equal(MeromorphicDerivative(Div(JacobiTheta(3, z, tau), JacobiTheta(1, z, tau)), For(z, z)), Neg(Mul(Mul(Pi, Pow(JacobiTheta(3, 0, tau), 2)), Div(Mul(JacobiTheta(2, z, tau), JacobiTheta(4, z, tau)), Pow(JacobiTheta(1, z, tau), 2)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))