Assumptions:
References:
- Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Section 80.
TeX:
\varepsilon_{1}\!\left(a, b, c, d\right) = \begin{cases} \left( \frac{c}{d} \right) \exp\!\left(\frac{\pi i}{4} \left[d \left(b - c - 1\right) + 2\right]\right), & c \text{ even}\\\left( \frac{d}{c} \right) \exp\!\left(\frac{\pi i}{4} \left[c \left(a + d + 1\right) - 3\right]\right), & c \text{ odd}\\ \end{cases}
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiThetaEpsilon | Root of unity in modular transformation of Jacobi theta functions | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Matrix2x2 | Two by two matrix | |
| SL2Z | Modular group |
Source code for this entry:
Entry(ID("03356b"),
Formula(Equal(JacobiThetaEpsilon(1, a, b, c, d), Cases(Tuple(Mul(KroneckerSymbol(c, d), Call(Exp, Mul(Div(Mul(Pi, ConstI), 4), Brackets(Add(Mul(d, Sub(Sub(b, c), 1)), 2))))), Even(c)), Tuple(Mul(KroneckerSymbol(d, c), Call(Exp, Mul(Div(Mul(Pi, ConstI), 4), Brackets(Sub(Mul(c, Add(Add(a, d), 1)), 3))))), Odd(c))))),
Variables(a, b, c, d),
Assumptions(Element(Matrix2x2(a, b, c, d), SL2Z)),
References("Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Section 80."))