References:
- https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty
TeX:
\int_{0}^{\infty} \theta_{2}^{4}\!\left(0, i t\right) \theta_{4}^{2}\!\left(0, i t\right) \, dt = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("02d9e4"), Formula(Equal(Integral(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2)), For(t, 0, Infinity)), 1)), References("https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty"))