Assumptions:
References:
- http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0002/
TeX:
36 {\left(y'(\tau)\right)}^{2} - 24 y''(\tau) y(\tau) + y'''(\tau) = 0\; \text{ where } y(\tau) = \frac{\eta'(\tau)}{\eta(\tau)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
ComplexDerivative | Complex derivative | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("02d14f"), Formula(Where(Equal(Add(Sub(Mul(36, Pow(ComplexDerivative(y(tau), For(tau, tau)), 2)), Mul(Mul(24, ComplexDerivative(y(tau), For(tau, tau, 2))), y(tau))), ComplexDerivative(y(tau), For(tau, tau, 3))), 0), Equal(y(tau), Div(ComplexDerivative(DedekindEta(tau), For(tau, tau)), DedekindEta(tau))))), Variables(tau), Assumptions(Element(tau, HH)), References("http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0002/"))