Fungrim home page

Fungrim entry: 0207dc

ζ ⁣(z,τ)=z3[d3dz3θ1 ⁣(z,τ)]z=0[ddzθ1 ⁣(z,τ)]z=0+ddzθ1 ⁣(z,τ)θ1 ⁣(z,τ)\zeta\!\left(z, \tau\right) = -\frac{z}{3} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}} + \frac{\frac{d}{d z}\, \theta_1\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)}
Assumptions:zCandτHandzΛ(1,τ)z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
TeX:
\zeta\!\left(z, \tau\right) = -\frac{z}{3} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}} + \frac{\frac{d}{d z}\, \theta_1\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol Notation Short description
WeierstrassZetaζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
JacobiTheta1θ1 ⁣(z,τ)\theta_1\!\left(z, \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
Source code for this entry:
Entry(ID("0207dc"),
    Formula(Equal(WeierstrassZeta(z, tau), Add(Mul(Neg(Div(z, 3)), Div(Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 3)), Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 1)))), Div(Derivative(JacobiTheta1(z, tau), Tuple(z, z, 1)), JacobiTheta1(z, tau))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC