Assumptions:
TeX:
\zeta\!\left(z, \tau\right) = -\frac{z}{3} \frac{\left[ \frac{d^{3}}{{d z}^{3}} \theta_1\!\left(z, \tau\right) \right]_{z = 0}}{\left[ \frac{d}{d z}\, \theta_1\!\left(z, \tau\right) \right]_{z = 0}} + \frac{\frac{d}{d z}\, \theta_1\!\left(z, \tau\right)}{\theta_1\!\left(z, \tau\right)} z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
WeierstrassZeta | Weierstrass zeta function | |
Derivative | Derivative | |
JacobiTheta1 | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("0207dc"), Formula(Equal(WeierstrassZeta(z, tau), Add(Mul(Neg(Div(z, 3)), Div(Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 3)), Derivative(JacobiTheta1(z, tau), Tuple(z, 0, 1)))), Div(Derivative(JacobiTheta1(z, tau), Tuple(z, z, 1)), JacobiTheta1(z, tau))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))