Assumptions:
TeX:
\zeta\!\left(z, \tau\right) = -\frac{z}{3} \frac{\theta'''_{1}\!\left(0 , \tau\right)}{\theta'_{1}\!\left(0 , \tau\right)} + \frac{\theta'_{1}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassZeta | Weierstrass zeta function | |
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("0207dc"),
Formula(Equal(WeierstrassZeta(z, tau), Add(Mul(Neg(Div(z, 3)), Div(JacobiTheta(1, 0, tau, 3), JacobiTheta(1, 0, tau, 1))), Div(JacobiTheta(1, z, tau, 1), JacobiTheta(1, z, tau))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))