Assumptions:
TeX:
R_C\!\left(x, -y\right) = \frac{1}{\sqrt{x + y}} \left(\operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) - \frac{\pi i}{2}\right)
x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("00cdb7"),
Formula(Equal(CarlsonRC(x, Neg(y)), Mul(Div(1, Sqrt(Add(x, y))), Sub(Atanh(Sqrt(Div(x, Add(x, y)))), Div(Mul(Pi, ConstI), 2))))),
Variables(x, y),
Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)))))