Fungrim home page

Fungrim entry: 00cdb7

RC ⁣(x,y)=1x+y(atanh ⁣(xx+y)πi2)R_C\!\left(x, -y\right) = \frac{1}{\sqrt{x + y}} \left(\operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) - \frac{\pi i}{2}\right)
Assumptions:x(0,)  and  y(0,)x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)
TeX:
R_C\!\left(x, -y\right) = \frac{1}{\sqrt{x + y}} \left(\operatorname{atanh}\!\left(\sqrt{\frac{x}{x + y}}\right) - \frac{\pi i}{2}\right)

x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("00cdb7"),
    Formula(Equal(CarlsonRC(x, Neg(y)), Mul(Div(1, Sqrt(Add(x, y))), Sub(Atanh(Sqrt(Div(x, Add(x, y)))), Div(Mul(Pi, ConstI), 2))))),
    Variables(x, y),
    Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC