Fungrim home page

Series representations of Carlson symmetric elliptic integrals

Table of contents: Definitions - Cases reducible to the Gauss hypergeometric function - Incomplete integrals - Complete integrals - General formulas for the series - Symmetric formulas - Approximations by truncated series - Integral representations - Gauss hypergeometric series

Related topics: Carlson symmetric elliptic integrals

Definitions

b576e6
Symbol: CarlsonHypergeometricR Ra ⁣(b,z)R_{-a}\!\left(b, z\right) Carlson multivariate hypergeometric function
a82bd6
Symbol: CarlsonHypergeometricT TN ⁣(b,z)T_{N}\!\left(b, z\right) Term in expansion of Carlson multivariate hypergeometric function

Cases reducible to the Gauss hypergeometric function

Related topics: Gauss hypergeometric function

72b5bd
RC ⁣(1,x)=2F1 ⁣(1,12,32,1x)R_C\!\left(1, x\right) = \,{}_2F_1\!\left(1, \frac{1}{2}, \frac{3}{2}, 1 - x\right)
b2fdfe
RF ⁣(0,x,1)=π22F1 ⁣(12,12,1,1x)R_F\!\left(0, x, 1\right) = \frac{\pi}{2} \,{}_2F_1\!\left(\frac{1}{2}, \frac{1}{2}, 1, 1 - x\right)
e98dd0
RG ⁣(0,x,1)=π42F1 ⁣(12,12,1,1x)R_G\!\left(0, x, 1\right) = \frac{\pi}{4} \,{}_2F_1\!\left(-\frac{1}{2}, \frac{1}{2}, 1, 1 - x\right)
9bfd88
RD ⁣(0,x,1)=3π42F1 ⁣(12,32,2,1x)R_D\!\left(0, x, 1\right) = \frac{3 \pi}{4} \,{}_2F_1\!\left(\frac{1}{2}, \frac{3}{2}, 2, 1 - x\right)
bbf003
RD ⁣(0,1,x)=3π4x2F1 ⁣(12,12,2,1x)R_D\!\left(0, 1, x\right) = \frac{3 \pi}{4 x} \,{}_2F_1\!\left(\frac{1}{2}, \frac{1}{2}, 2, 1 - x\right)

Incomplete integrals

8f71cb
RF ⁣(x,y,z)=R1/2 ⁣([12,12,12],[x,y,z])R_F\!\left(x, y, z\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z\right]\right)
fda084
RG ⁣(x,y,z)=R1/2 ⁣([12,12,12],[x,y,z])R_G\!\left(x, y, z\right) = R_{1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z\right]\right)
b2cd79
RJ ⁣(x,y,z,w)=R3/2 ⁣([12,12,12,1],[x,y,z,w])R_J\!\left(x, y, z, w\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right], \left[x, y, z, w\right]\right)
e93f43
RJ ⁣(x,y,z,w)=R3/2 ⁣([12,12,12,12,12],[x,y,z,w,w])R_J\!\left(x, y, z, w\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z, w, w\right]\right)
8d304b
RD ⁣(x,y,z)=R3/2 ⁣([12,12,32],[x,y,z])R_D\!\left(x, y, z\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right], \left[x, y, z\right]\right)
e1a3fb
RD ⁣(x,y,z)=R3/2 ⁣([12,12,12,12,12],[x,y,z,z,z])R_D\!\left(x, y, z\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, z, z, z\right]\right)
7ded8f
RC ⁣(x,y)=R1/2 ⁣([12,1],[x,y])R_C\!\left(x, y\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, 1\right], \left[x, y\right]\right)
42c7f1
RC ⁣(x,y)=R1/2 ⁣([12,12,12],[x,y,y])R_C\!\left(x, y\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, y\right]\right)

Complete integrals

cbcad9
Ra ⁣([b1,b2,,bn],[0,z2,z3,,zn])=B ⁣(a,cb1)B ⁣(a,c)Ra ⁣([b2,b3,,bn],[z2,z3,,zn])   where c=a+k=1nbkR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[0, z_{2}, z_{3}, \ldots, z_{n}\right]\right) = \frac{\mathrm{B}\!\left(a, c - b_{1}\right)}{\mathrm{B}\!\left(a, c\right)} R_{-a}\!\left(\left[b_{2}, b_{3}, \ldots, b_{n}\right], \left[z_{2}, z_{3}, \ldots, z_{n}\right]\right)\; \text{ where } c = -a + \sum_{k=1}^{n} b_{k}
d0c9ff
RF ⁣(0,y,z)=π2R1/2 ⁣([12,12],[y,z])R_F\!\left(0, y, z\right) = \frac{\pi}{2} R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}\right], \left[y, z\right]\right)
00c331
RD ⁣(0,y,z)=3π4R3/2 ⁣([12,32],[y,z])R_D\!\left(0, y, z\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{3}{2}\right], \left[y, z\right]\right)
37ffb7
RD ⁣(0,y,z)=3π4R3/2 ⁣([12,12,12,12],[y,z,z,z])R_D\!\left(0, y, z\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[y, z, z, z\right]\right)
5a8f57
RJ ⁣(0,y,z,w)=3π4R3/2 ⁣([12,12,1],[y,z,w])R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, 1\right], \left[y, z, w\right]\right)
7314c4
RJ ⁣(0,y,z,w)=3π4R3/2 ⁣([12,12,12,12],[y,z,w,w])R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[y, z, w, w\right]\right)
b4a735
RG ⁣(0,y,z)=π4R1/2 ⁣([12,12],[y,z])R_G\!\left(0, y, z\right) = \frac{\pi}{4} R_{1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}\right], \left[y, z\right]\right)

General formulas for the series

da47f6
TN ⁣([b1,b2,,bn],[z1,z2,,zn])=(m1,m2,,mn)(Z0)nk=1nmk=Nk=1n(bk)mk(mk)!zkmkT_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} m_{k} = N}} \prod_{k=1}^{n} \frac{\left(b_{k}\right)_{m_{k}}}{\left(m_{k}\right)!} z_{k}^{m_{k}}
4cb707
Ra ⁣([b1,b2,,bn],[z1,z2,,zn])=N=0(a)N(c)NTN ⁣([b1,b2,,bn],[1z1,1z2,,1zn])   where c=k=1nbkR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(c\right)_{N}} T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[1 - z_{1}, 1 - z_{2}, \ldots, 1 - z_{n}\right]\right)\; \text{ where } c = \sum_{k=1}^{n} b_{k}
2443de
Ra ⁣([b1,b2,,bn],[z1,z2,,zn])=znaN=0(a)N(c)NTN ⁣([b1,b2,,bn1],[1z1zn,1z2zn,,1zn1zn])   where c=k=1nbkR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = z_{n}^{-a} \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(c\right)_{N}} T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n - 1}\right], \left[1 - \frac{z_{1}}{z_{n}}, 1 - \frac{z_{2}}{z_{n}}, \ldots, 1 - \frac{z_{n - 1}}{z_{n}}\right]\right)\; \text{ where } c = \sum_{k=1}^{n} b_{k}

Symmetric formulas

13f252
Ra ⁣([β,,βn times],[z1,z2,,zn])=AaRa ⁣([β,,βn times],[z1A,z2A,,znA])   where A=1nk=1nzkR_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = {A}^{-a} R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[\frac{z_{1}}{A}, \frac{z_{2}}{A}, \ldots, \frac{z_{n}}{A}\right]\right)\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k}
a21395
Ra ⁣([β,,βn times],[z1,z2,,zn])=AaN=0(a)N(nβ)NTN ⁣([β,,βn times],[1z1A,1z2A,,1znA])   where A=1nk=1nzkR_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = {A}^{-a} \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(n \beta\right)_{N}} T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[1 - \frac{z_{1}}{A}, 1 - \frac{z_{2}}{A}, \ldots, 1 - \frac{z_{n}}{A}\right]\right)\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k}
0a7f30
TN ⁣([β,,βn times],[z1,z2,,zn])=(m1,m2,,mn)(Z0)nk=1nkmk=N(1)M+N(β)Mk=1nekmk ⁣([z1,z2,,zn])(mk)!   where M=k=1nmkT_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} k m_{k} = N}} {\left(-1\right)}^{M + N} \left(\beta\right)_{M} \prod_{k=1}^{n} \frac{e_{k}^{m_{k}}\!\left(\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)}{\left(m_{k}\right)!}\; \text{ where } M = \sum_{k=1}^{n} m_{k}
2c1df7
Ra ⁣([b1,b2,,bn],[λz1,λz2,,λzn])=λaRa ⁣([b1,b2,,bn],[z1,z2,,zn])R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[\lambda z_{1}, \lambda z_{2}, \ldots, \lambda z_{n}\right]\right) = {\lambda}^{-a} R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)
b81ca0
Ra ⁣([b1,b2,,bn],[z,,zn times])=zaR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[\underbrace{z, \ldots, z}_{n \text{ times}}\right]\right) = {z}^{-a}

Approximations by truncated series

926b36
Ra ⁣([β,,βn times],[z1,z2,,zn])AaN=0K1(a)N(nβ)NTN ⁣([β,,βn times],[z1,z2,,zn])Aa(a)KMKK!(1M)max(a,1)   where A=1nk=1nzk,  Zk=1zkA,  M=max ⁣(Z1,Z2,,Zn)\left|R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) - {A}^{-a} \sum_{N=0}^{K - 1} \frac{\left(a\right)_{N}}{\left(n \beta\right)_{N}} T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)\right| \le \frac{\left|{A}^{-a}\right| \left(\left|a\right|\right)_{K} {M}^{K}}{K ! {\left(1 - M\right)}^{\max\left(\left|a\right|, 1\right)}}\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k},\;Z_{k} = 1 - \frac{z_{k}}{A},\;M = \max\!\left(\left|Z_{1}\right|, \left|Z_{2}\right|, \ldots, \left|Z_{n}\right|\right)
799894
RF ⁣(x,y,z)A1/2(1E10+F14+E2243EF445E3208+3F2104+E2F16)0.2A1/2M81M   where A=x+y+z3,  X=1xA,  Y=1yA,  Z=1zA,  E=XY+XZ+YZ,  F=XYZ,  M=max ⁣(X,Y,Z)\left|R_F\!\left(x, y, z\right) - {A}^{-1 / 2} \left(1 - \frac{E}{10} + \frac{F}{14} + \frac{{E}^{2}}{24} - \frac{3 E F}{44} - \frac{5 {E}^{3}}{208} + \frac{3 {F}^{2}}{104} + \frac{{E}^{2} F}{16}\right)\right| \le \frac{0.2 \left|{A}^{-1 / 2}\right| {M}^{8}}{1 - M}\; \text{ where } A = \frac{x + y + z}{3},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;E = X Y + X Z + Y Z,\;F = X Y Z,\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|\right)
618a9f
RJ ⁣(x,y,z,w)A3/2(13E14+F6+9E2883G229EF52+3H26E316+3F240+3EG20+45E2F2729FG689EH68)3.4A3/2M8(1M)3/2   where A=x+y+z+2w5,  X=1xA,  Y=1yA,  Z=1zA,  W=(XYZ)2,  E=XY+XZ+YZ3W2,  F=XYZ+2EW+4W3,  G=(2XYZ+EW+3W3)W,  H=XYZW2,  M=max ⁣(X,Y,Z,W)\left|R_J\!\left(x, y, z, w\right) - {A}^{-3 / 2} \left(1 - \frac{3 E}{14} + \frac{F}{6} + \frac{9 {E}^{2}}{88} - \frac{3 G}{22} - \frac{9 E F}{52} + \frac{3 H}{26} - \frac{{E}^{3}}{16} + \frac{3 {F}^{2}}{40} + \frac{3 E G}{20} + \frac{45 {E}^{2} F}{272} - \frac{9 F G}{68} - \frac{9 E H}{68}\right)\right| \le \frac{3.4 \left|{A}^{-3 / 2}\right| {M}^{8}}{{\left(1 - M\right)}^{3 / 2}}\; \text{ where } A = \frac{x + y + z + 2 w}{5},\;X = 1 - \frac{x}{A},\;Y = 1 - \frac{y}{A},\;Z = 1 - \frac{z}{A},\;W = \frac{\left(-X - Y - Z\right)}{2},\;E = X Y + X Z + Y Z - 3 {W}^{2},\;F = X Y Z + 2 E W + 4 {W}^{3},\;G = \left(2 X Y Z + E W + 3 {W}^{3}\right) W,\;H = X Y Z {W}^{2},\;M = \max\!\left(\left|X\right|, \left|Y\right|, \left|Z\right|, \left|W\right|\right)

Integral representations

a1f7ea
Ra ⁣([b1,b2,,bn],[z1,z2,,zn])=1B ⁣(a,c)0tc1k=1n(t+zk)bkdt   where c=a+j=1nbjR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \frac{1}{\mathrm{B}\!\left(a, c\right)} \int_{0}^{\infty} {t}^{c - 1} \prod_{k=1}^{n} {\left(t + z_{k}\right)}^{-b_{k}} \, dt\; \text{ where } c = -a + \sum_{j=1}^{n} b_{j}
c5d388
Ra ⁣([b1,b2,,bn],[z1,z2,,zn])=1B ⁣(a,c)0ta1k=1n(1+tzk)bkdt   where c=a+j=1nbjR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \frac{1}{\mathrm{B}\!\left(a, c\right)} \int_{0}^{\infty} {t}^{a - 1} \prod_{k=1}^{n} {\left(1 + t z_{k}\right)}^{-b_{k}} \, dt\; \text{ where } c = -a + \sum_{j=1}^{n} b_{j}

Gauss hypergeometric series

157ebb
RC ⁣(1,1+y)=2F1 ⁣(1,12,32,y)R_C\!\left(1, 1 + y\right) = \,{}_2F_1\!\left(1, \frac{1}{2}, \frac{3}{2}, -y\right)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC