Fungrim home page

Fungrim entry: f77752

sin ⁣(x+yi)cosh(y)\left|\sin\!\left(x + y i\right)\right| \le \cosh(y)
Assumptions:xR  and  yRx \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
\left|\sin\!\left(x + y i\right)\right| \le \cosh(y)

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Sinsin(z)\sin(z) Sine
ConstIii Imaginary unit
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(LessEqual(Abs(Sin(Add(x, Mul(y, ConstI)))), Cosh(y))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC