Fungrim home page

Fungrim entry: f617c0

π=4k=0(1)k2k+1\pi = 4 \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k}}{2 k + 1}
\pi = 4 \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k}}{2 k + 1}
Fungrim symbol Notation Short description
ConstPiπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstPi, Mul(4, Sum(Div(Pow(-1, k), Add(Mul(2, k), 1)), For(k, 0, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC