Assumptions:
References:
- https://doi.org/10.1016/0022-0728(88)87001-3
TeX:
\int_{0}^{\infty} {e}^{-a t} \theta'_{1}\!\left(0 , i t\right) \, dt = 2 \pi \frac{1}{\cosh\!\left(\sqrt{\pi a}\right)}
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Exp | Exponential function | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("f42652"),
Formula(Equal(Integral(Mul(Exp(Mul(Neg(a), t)), JacobiTheta(1, 0, Mul(ConstI, t), 1)), For(t, 0, Infinity)), Mul(Mul(2, Pi), Div(1, Cosh(Sqrt(Mul(Pi, a))))))),
Variables(a),
Assumptions(And(Element(a, CC), Greater(Re(a), 0))),
References("https://doi.org/10.1016/0022-0728(88)87001-3"))