Fungrim home page

Fungrim entry: ed4cca

G=1401011(x+y)1x1ydxdyG = \frac{1}{4} \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(x + y\right) \sqrt{1 - x} \sqrt{1 - y}} \, dx \, dy
TeX:
G = \frac{1}{4} \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(x + y\right) \sqrt{1 - x} \sqrt{1 - y}} \, dx \, dy
Definitions:
Fungrim symbol Notation Short description
ConstCatalanGG Catalan's constant
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sqrtz\sqrt{z} Principal square root
Source code for this entry:
Entry(ID("ed4cca"),
    Formula(Equal(ConstCatalan, Mul(Div(1, 4), Integral(Integral(Div(1, Mul(Mul(Add(x, y), Sqrt(Sub(1, x))), Sqrt(Sub(1, y)))), For(x, 0, 1)), For(y, 0, 1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC