Fungrim home page

Fungrim entry: ec5a44

λ ⁣(τ2τ+1)=λ ⁣(τ)\lambda\!\left(\frac{\tau}{2 \tau + 1}\right) = \lambda\!\left(\tau\right)
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\frac{\tau}{2 \tau + 1}\right) = \lambda\!\left(\tau\right)

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("ec5a44"),
    Formula(Equal(ModularLambda(Div(tau, Add(Mul(2, tau), 1))), ModularLambda(tau))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC