Fungrim home page

Fungrim entry: ebc673

θj ⁣(z,τ)4πiddτθj ⁣(z,τ)=0\theta''_{j}\!\left(z , \tau\right) - 4 \pi i \frac{d}{d \tau}\, \theta_{j}\!\left(z , \tau\right) = 0
Assumptions:j{1,2,3,4}andzCandτHj \in \left\{1, 2, 3, 4\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta''_{j}\!\left(z , \tau\right) - 4 \pi i \frac{d}{d \tau}\, \theta_{j}\!\left(z , \tau\right) = 0

j \in \left\{1, 2, 3, 4\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("ebc673"),
    Formula(Equal(Sub(JacobiTheta(j, z, tau, 2), Mul(Mul(Mul(4, ConstPi), ConstI), Derivative(JacobiTheta(j, z, tau), tau, tau))), 0)),
    Variables(j, z, tau),
    Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC