Fungrim home page

Fungrim entry: e9f0c8

λ ⁣(τ1τ)=1λ ⁣(τ)\lambda\!\left(\frac{\tau}{1 - \tau}\right) = \frac{1}{\lambda\!\left(\tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\frac{\tau}{1 - \tau}\right) = \frac{1}{\lambda\!\left(\tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("e9f0c8"),
    Formula(Equal(ModularLambda(Div(tau, Sub(1, tau))), Div(1, ModularLambda(tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 13:58:57.282983 UTC