Fungrim home page

Fungrim entry: e9232b

Tn ⁣(x)=nk=0n2k(n+k1)!(nk)!(2k)!(x1)kT_{n}\!\left(x\right) = n \sum_{k=0}^{n} \frac{{2}^{k} \left(n + k - 1\right)!}{\left(n - k\right)! \left(2 k\right)!} {\left(x - 1\right)}^{k}
Assumptions:nZ1andxCn \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
T_{n}\!\left(x\right) = n \sum_{k=0}^{n} \frac{{2}^{k} \left(n + k - 1\right)!}{\left(n - k\right)! \left(2 k\right)!} {\left(x - 1\right)}^{k}

n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Factorialn!n ! Factorial
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("e9232b"),
    Formula(Equal(ChebyshevT(n, x), Mul(n, Sum(Mul(Div(Mul(Pow(2, k), Factorial(Sub(Add(n, k), 1))), Mul(Factorial(Sub(n, k)), Factorial(Mul(2, k)))), Pow(Sub(x, 1), k)), For(k, 0, n))))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC