Fungrim home page

Fungrim entry: e8af68

γ=limx0+[K0 ⁣(x)log ⁣(x2)]\gamma = \lim_{x \to {0}^{+}} \left[-K_{0}\!\left(x\right) - \log\!\left(\frac{x}{2}\right)\right]
\gamma = \lim_{x \to {0}^{+}} \left[-K_{0}\!\left(x\right) - \log\!\left(\frac{x}{2}\right)\right]
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
RightLimitlimxa+f ⁣(x)\lim_{x \to {a}^{+}} f\!\left(x\right) Limiting value, from the right
BesselKKν ⁣(z)K_{\nu}\!\left(z\right) Modified Bessel function of the second kind
Loglog ⁣(z)\log\!\left(z\right) Natural logarithm
Source code for this entry:
    Formula(Equal(ConstGamma, RightLimit(Brackets(Sub(Neg(BesselK(0, x)), Log(Div(x, 2)))), x, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC