Fungrim home page

Fungrim entry: e6deb7

n=0Nχ(n)φ(q)\left|\sum_{n=0}^{N} \chi(n)\right| \le \varphi(q)
Assumptions:qZ1andNZandχGqandχχq.1q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \chi \in G_{q} \,\mathbin{\operatorname{and}}\, \chi \ne \chi_{q \, . \, 1}
TeX:
\left|\sum_{n=0}^{N} \chi(n)\right| \le \varphi(q)

q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \chi \in G_{q} \,\mathbin{\operatorname{and}}\, \chi \ne \chi_{q \, . \, 1}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Sumnf(n)\sum_{n} f(n) Sum
Totientφ(n)\varphi(n) Euler totient function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZZ\mathbb{Z} Integers
DirichletGroupGqG_{q} Dirichlet characters with given modulus
DirichletCharacterχq.\chi_{q \, . \, \ell} Dirichlet character
Source code for this entry:
Entry(ID("e6deb7"),
    Formula(LessEqual(Abs(Sum(chi(n), For(n, 0, N))), Totient(q))),
    Variables(N),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(N, ZZ), Element(chi, DirichletGroup(q)), Unequal(chi, DirichletCharacter(q, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC